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Abstract-Classical linear stability theory is extended to include the effect of temperature dependent 
viscosity. This effect is studied asymptotically by using a Taylor series expansion of viscosity with respect 
to temperature. In its general form the asymptotic solution holds for all Newtonian fluids for which the 
temperature dependence of viscosity is the dominating variable property effect. A shooting technique with 
Gram-Schmidt orthonormalization for the zero-order equation (classical OrrrSommerfeld problem) and 

a multiple shooting method for all other equations are applied to solve the stiff differential equations. 

1. INTRODUCTION this section. The flow for .Y* > 0 is fully developed as 
soon as the difference between the wall and the bulk 
temperature, i.e. (r;- Tz), is independent of x*. see 
the lower part of Fig. I. Stability considerations of 
this study refer to this part of the flow field. 

AMONG the studies that have investigated the stability 
of laminar boundary layer flows, only a few have 
taken into account the effect of variable properties, 
even though non-constant properties can have a 
strong effect on the critical Reynolds number. For 
example, Wazzan et al. [I] investigated the boundary 
layer stability of water under non-isothermal con- 
ditions. They found that the critical Reynolds number 
for a heated flat plate boundary layer in water varies 
between 520 and nearly 16000. Potter and Graber [2] 
in their study for liquids found a reduction of the 
critical Reynolds number by 50% for a 78’C tem- 
perature difference between the walls. Other studies 
of forced convection stability which take into account 
variable property effects in a more or less systematic 
way are those by Hauptmann [3], Lee et al. [4] and 
Asfar et al. [S]. 

The general method to account for small variable 
property effects, which will be applied to Poiseuille 
flow with temperature dependent viscosity, is outlined 
in Herwig and Schafer [6]. The basic approach starts 
from a Taylor series expansion of the properties under 
consideration. Next, a regular perturbation procedure 
is applied to the basic equations of stability with the 
constant property case representing leading order 
behaviour. 

2. GOVERNING EQUATIONS 

The flow under consideration is a laminar plane 
Poiseuille flow which is heated for x* > 0 with a con- 
stant wall heat flux which is equal on both walls 
(q& = -q$), see Fig. 1. Due to the temperature 
dependence of viscosity the velocity profile is changed 
by the heat transfer. Downstream of an adjustment 
zone the flow will reach a new fully developed state 
which is described in paragraph 3.1 below. In Fig. I 
typical velocity and temperature profiles are shown in 

2. I. MeunJlon equations 

The basic equations for the mean flow are the so- 

called slender channel equations for variable viscosity. 
see for example Van Dyke [7] and Gersten and Herwig 
[8]. Nondimensionalised according to Table I they 
read (- = mean flow quantity) 

(1) 

(2) 

with the associated boundary conditions 

aT 
y= -1:1?=v=o, &= -I. (5) 

The reference state R should be at s* = 0 when the 
whole region x* > 0 is under consideration. But, since 

we only refer to the fully developed region, we may 
(arbitrarily) choose some position .Y: in this part of 
the flow field with 7’g(sX) as reference temperature. 
This can be done because the x*-dependence of T*(s*, 
v*) is of the special kind described by equation (36) 
below. 

With the reference velocity Ug = ti*/(p*B*2H*) 
(average velocity in the channel) the Reynolds number 
(with /1: = p*(Tg)) is 

2441 



2442 P. SCHAEFER and H. HERWW 

NOMENCLATURE 

C, amplification rate E perturbation parameter, equation 

C, phase velocity (16) 

2 
specific heat at constant pressure P viscosity 
half channel height ii amplitude function of the viscosity 

k thermal conductivity cp stream function 

KP nondimensional viscosity gradient, P density. 
equation (16) 

tfl mass flux Superscripts 

P pressure * dimensional quantity 
Pr Prandtl number p*c,*k* - mean value 

Yw wall heat flux 
Re Reynolds number, equation (6) 
T temperature 
T- temperature amplitude function 
U streamwise velocity 
ti amplitude function of the streamwise 

velocity 
ht reference velocity 

V velocity normal to the wall 
D amplitude function of the velocity 

normal to the wall 
x3 Y Cartesian coordinates. 

Greek symbols 
u wave length parameter, equation (7) 

fluctuating quantity 
derivative with respect to y  
complex quantity. 

Subscripts 
B bulk 
C critical 
i imaginary part 
I lower 
r real part 
R reference condition 
U upper 

wall 
; zero order 
1 first order. 

Re = P*GH* the Orr-Sommerfeld equation (from now on referred 
R 

Pt . 
(6) to as the OS equation), see for example Schhchting 

[9]. Squire [IO] has shown that it is sufficient to con- 
2.2. Linear stability equations sider two-dimensional disturbances. For variable 

For constant properties, the fundamental differ- properties, the same result was found by Yih [I I] by 
ential equation of the method of small disturbances is extending Squire’s method. 

--- 

FULLY DEVELOPED FLOW 
--- 

T*]::: 

FIG. 1. Velocity and temperature profiles in the fully developed region of a uniformly heated channel. 
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Table 1. Nondimensionalization in equations (l)-(S). (All dimensional quantities are starred) 

For the present analysis we need an extended ver- 
sion of the OS equation which holds when viscosity 
is temperature dependent. Due to this temperature 
dependence the modified OS equation must be sup- 
plemented by the thermal energy equation for the 
disturbances. 

In the method of small disturbances all quantities 
are decomposed into a mean value, G*, and a super- 
imposed disturbance a’*. Here a* represents the vel- 
ocity components U* and v* (two-dimensional flow), 
the pressure p*, the temperature T* and the viscosity 
p*. The common assumption (e.g. Schlichting [9]) is 
that an arbitrary two-dimensional disturbance can be 
expanded in a Fourier series, thus a single oscillation 
of the disturbance is assumed to be of the form (tem- 
poral stability) 

ci’*(x*,y*, f*) = ci*(y*)exp [ict*(.u*-t*t*)]. (7) 

In equation (7) CI* is real with 2n/u* being the wave- 
length of the single oscillation. The quantity ?* is 
complex, 

f* = c*+ic* r I . (8) 

Here cf denotes the phase velocity whereas CT deter- 
mines the degree of amplification (c? > 0) or damping 
(c: < 0). From now on all complex quantities are 
marked by the symbol .̂ 

From the Navier-Stokes equations and the thermal 
energy equation (both for temperature dependent vis- 
cosity), together with the continuity equation the 
differential equations for the dimensionless amplitude 
functions G(y), u’(y) and F(y) can be deduced. For 
details of this procedure see the related study by Her- 
wig and Schafer [6]. 

We introduce the stream function C$ by 

; = $‘, d = -ia@. (9) 

Here and from now on the symbol ’ denotes the 
derivative with respect to y, i.e. for example 
@’ = @lay. The two differential equations for G,(y) 
and F(y) are, respectively, 

(~-p)(~~-&jj)-~~@ 

In equations (10) and (I I) the amplitude functions 
4, ? and k are nondimensionalised like the cor- 
responding mean flow quantities, the parameters a 
and ? are u = a*H* and (: = ?/U*,, respectively. For 
p = I and fi = 0, equation (IO) is reduced to the well- 
known OS equation (constant properties). 

In equations (10) and (11) quadratic terms are 
neglected (linear stability theory). In this case 
(qz = const.) we need no parallel flow assumption 
because the only s-dependences in the governing stab- 
ility equations are those of T,(X) and k(x) which are 
linear functions, so that dT/h and dji/dx are constant. 

The boundary conditions for rj and Fare 

y= l:@=fjj$=T=O (12) 

y= -l:(I,=qy=~=O. (13) 

3. ASYMPTOTIC APPROACH 

The influence of temperature dependent viscosity 
will be accounted for by a regular perturbation pro- 
cedure based on a Taylor series expansion of p*(T*). 
This has been proved to be successful for laminar 
(mean) flow, see for example Herwig [ 121 for pipe flow 
with variable properties. It will be extended in this 
study to the stability problem. The Taylor series 
expansion of p* at the reference temperature TR is 

P*=P:+~ (T*-T;)+.... (14) 
R 

Equation (14) can be nondimensionalised and re- 
written as follows 

p = 2 = I +EK,,T+O(E’) (15) 

with 

The nondimensional temperature T according to 
Table 1 is T = (T*-Tc)/(qz,H*/I*). In equation 
(15) E is assumed to be small, i.e. we assume small 
heat transfer rates. The nondimensional heat flux E 
will be the perturbation parameter for the subsequent 
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asymptotic analysis. Truncating the Taylor series after 
the linear term, as we do in equation (1 S), results in a 
linear perturbation theory with respect to E. Extension 
to higher orders (.s2, e3, . . .) is straightforward but not 
in the scope of this study. 

The parameter K,, is the nondimensional first 
derivative of p* with respect to T*. It is a property of 
the fluid (for example: water at Tg = 293 K, 
K, = -7.13). 

Due to the decomposition p = F + jj exp [ia(x - ?t)] 
equation (15) results in 

ji = 1 +&K,,T+O(c2) (17) 

ji = EK~~~+O(E~). (18) 

The mean flow field is affected by variable viscosity 
effects through fi whereas the stability equations (I 0) 
and (11) are affected by the mean as well as by the 
disturbance part of the viscosity. 

3.1. Meanflow solutions 
Equation (17) suggests the following expansions of 

the mean flow quantities : 

1= z?,+.~K,,zi, +O(c2) 

17 = fi,+~K,d, +O(c2) 

jj = ~o+eK,#, +O(s2) 

T= TO+cKcT, +O(E~). (19) 

Inserting these expansions into equations (l)-(3) and 
collecting terms of equal magnitude with respect to E 
(i.e. O(l), O(E)) gives two sets of equations, one for 
the zero order quantities d,,, Co, . . . and one for I,, 
v,, .*.. 

These equations can be solved analytically (see Her- 
wig [12] for the related study of pipe flow). The solu- 
tions are : 

f&=$(1-y2); IT,=0 (20) 

p. = -3x (21) 

(22) 

and 

27 3 
-x2 81 = -zx-2Pr, 

(23) 

(24) 

53 16817 
+jgJ2+- 2 587 200 (25) 

Equations (20)-(22) are the well-known constant 
property results. Equations (23)-(25) are the variable 

viscosity influence functions with respect to (small) 
heat transfer rates. Together with the constant prop- 
erty results, according to equation (19), they describe 
the mean flow in the fully developed heat transfer 
region of Fig. 1. 

3.2. Linear stability solutions 
The stability equations (10) and (1 l), from which 

the amplitude functions @ and F can be determined, 
are now subject to a perturbation procedure similar 
to that of the mean flow. Therefore, also 4, f and P 
are expanded : 

@ = &+EK,,~,+O(E~) 

T= FO+eKpf,+O(~‘) 

P = E,+EK,T, +O(E~). (26) 

A crucial step in the theory is the expansion of the 
parameter C in the same way as the expansion of 4 
and f. This leads to the specific form of the first 
order equation (30) below, from which E, can be 
determined. 

The viscosity amplitude function ,G according to 
equation (18) now is 

/I = EK&+O(E*). (27) 

Inserting all the expansions into (10) and (1 l), and 
collecting terms of equal magnitude with respect to 
EK,,, leads to the following set of stability equations : 

Zero order : 

= - -&(&“‘-2a2@;+a44,,) (28) 

4;. (29) 

First order : 

(~o-eg)(~‘~-a*~,)-~~~, 

= -(n,-C,)(~~-~r~~,)+~‘~;@~ 

with the associated boundary conditions 

y= +l:&=&=~O=@, =I$‘, =O (31) 

y = - 1 : &, = 96 = ft, = 4, = 4; = 0. (32) 
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The terms &i/ax and aT/dx in equations (10) and (11) 
are @/ax = EK,,/Pr, and aT/ax = l/Pr,, respec- 
tively. 

Equation (28) is the classical OS equation (constant 
properties). It is the zero order equation of the asymp- 
totic expansion with respect to E. It is well-known 
that the OS equation describes an eigenvalue problem 
which owing to its stiffness is difficult to solve numeri- 
cally (see e.g. Mack [13]). With these difficulties in 
mind, the numerical procedure for the zero and first 
order equations will be discussed next. 

3.2.1. Zero order momentum (classical OS equa- 
tion). Due to the stiffness of equation (28), the inte- 
gration is performed by applying the so-called Gram- 
Schmidt orthonormalization. For details of this pro- 
cedure, see for example Mack [14]. As a consequence 
of this orthonormalization Go(y) is given as a piece- 
wise steady function in subregions of - 1 < y < 1. 
But, since G,,(y) is needed in equation (29) a con- 
tinuous function is recovered from this by a patching 
procedure described in Herwig and Schafer [6]. As 
an example for this continuous function the derivative 
of $,, (i.e. dq,,/dy and d&dy) is shown in Fig. 2 for 
the critical Reynolds number Re,. Since &, can be 
determined from equation (28) only up to a (complex) 
constant, Go can be arbitrarily norrnalised. 

The critical Reynolds number from our calculations 
is Re, = 3848.1 which agrees very well with the result 
of Orszag [IS], for example, who also found 
Re, = 3848.1. 

In Fig. 2 the y-position of the critical layer (i.e. the 
position where ii,, = cOr) is marked by an arrow. At 
this position, the stability equations become singular 
for l/Re, = 0, see equation (28). For large but finite 
Reynolds numbers substantial changes may occur in 
the vicinity of this layer. 

3.2.2. Zero order temperature. The thermal energy 
stability equation (29) is solved to determine the 
amplitude function F&J). Equation (29) is a non- 
homogeneous linear second order differential equa- 
tion with homogeneous boundary conditions. It is 
also a stiff differential equation like (28), and was 
solved by the so-called multiple shooting method (see 
Stoer and Bulirsch [16]). In this method, the whole 

21 !  I I 

IVI - dv&dy 
--- dq,,ldy 

21 j I I 
-1 Y 1 

FIG. 2. First derivatives of the amplitude function GO. 
Re, = 3848.1; a = 1.02; 4, = 0.396; cti = 0.0. Norrnalised 

so that max I&l = max I&l = 1. 

OS21 
/-‘-‘, 

‘\ 

To 

--- rti 

-0.2 
-1 Y 1 

FIG. 3. Zero order temperature amplitude function fO for 
9: = const. Re, = 3848.1 ; ct = 1.02; co, = 0.396; c,,~ = 0.0 

PrR = 0.7. 

solution domain is cast into subregions. Then a first 
step integration is performed starting from assumed 
boundary conditions in each subregion (taking into 
account the boundary conditions on both walls). In 
subsequent steps, the discontinuities at the boundaries 
of the subregions are removed so that a continuous 
function F0 results. 

In Fig. 3, the amplitude function TO(o(y) is shown 
for a specific set of parameters (Pr,, Re,, Coi). 

3.2.3. First order momentum. Equation (30) is a 
nonhomogeneous differential equation of the general 
form 

with the OS differential operator L given by 

L[@,&] = (n,-e,)(q3,c-a2~)-ti;fj 

Specific values of S, must be found for which (33) 
has a solution. The term ‘eigenvalue’ should be used 
only in connection with homogeneous equations. 
Therefore e, will be called ‘first order parameter’ from 
now on. 

The corresponding solution will be denoted by @iP 
(p for particular solution). The general solution of 
equation (33) then is 

4, = ~I,+ch3, (35) 

since @,, satisfies L[Q, P,] = 0. Due to the undeter- 
mined complex constant c in (35) integration can 
start from the lower wall fixing K( - 1) arbitrarily, 
for example. Integration was again performed by the 
multiple shooting method, using S, as the shooting 
parameter. In Fig. 4 the first derivative of the ampli- 
tude function G,(y) is shown for the same parameters 
as in Fig. 3. For normalization we have set 
cp;, = rpyi = 1. The constant ?, for this case is 
0.0374+i*O.O175. 

3.3. The critical Reynolds number 
The influence of temperature dependent viscosity 

on the critical Reynolds number can be determined 
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0.6 , I I 

-0.6 ' I I 1500 1 
-1 Y 1 -0.7 0.0 

EKI, 
0.7 

FIG. 4. First derivative of the amplitude function 4,. Re,, 
u. co and Pr, as in Fig. 3. Normalised, so that FIG. 6. Critical Reynolds number for non-isothermal Poise- 

f&(O) = c&(O) = I. uille flow with temperature dependent viscosity; 4: = const. ; 
Pr = 0.7 (very insensitive with respect to this parameter. see 

Section 3.3). Re, = p*lJRH*/& with nX = p*(Tz(xR)). 

from Figs. 5(a)-(c). In these figures the eigenvalue cgi 
and the first order parameter cli are given as functions 
of tl for three different Reynolds numbers. Flow insta- 
biIities occur, whenever ci = cgi +a&,~,~ exceeds zero. 

turbation parameter EK,, (here K, is an O( 1) constant 

At the critical Reynolds number ci = 0 holds just for 
with respect to the asymptotic expansions). In Fig. 6, 

one particular value of LY. For constant properties 
Re, is shown as a function of cK,,. From equations (29) 

(E = 0, i.e. ci = cgi) this occurs for Re = 3848.1, as 
and (30) one expects a Prandtl number dependence of 

can be seen in Fig. 5(b). For variable properties, the 
these curves. But, it turns out that this effect is so 

critical Reynolds number Re, is reached, when 
small that in Fig. 6 the two curves for Pr = 0.7 and 

ci = c,,+~K,,c,~ = 0. From Fig. 5(a) we find that 
7.0, for example, coincide. The Prandtl number only 

Re, = 1000 for EK# = 1.11 since then ci is zero for just 
influences the temperature fluctuations (which have 

one CC The corresponding numbers in Fig. 5(c) are: 
little influence on the stability behaviour, see Section 

Re, = 8000 for EK,, = -0.71. 
4.1 below). 

Based on a large number of curves for Coi(cI) and 
From this figure we can conclude that the flow is 

c,,(a) like those in Fig. 5, we can find the critical 
stabilised when EK,, < 0, since then the critical Reyn- 

Reynolds number Re, as a function ?of the per- 
olds number lies above that for EK,, = 0 (classical OS 
problem). 

The combination EK,, is negative : 

(a) for fluids with K, < 0 that are heated (E > 0) 
(like water with K,, = -7.13 at 293 K, 1 bar) ; 

(b) for fluids with K,, > 0 that are cooled (E < 0) 
(like air with K,, = 0.73 at 293 K, 1 bar). 

From Fig. 6 it can also be concluded that the 

/ 
stabilising/destabilising effect for a certain amount of 

1 I k I heating (fixed E > 0) for water is much stronger than 
for air, since 1 K,, 1 is nearly ten times larger for water. 

For a physical interpretation of these effects, one 
should keep in mind the temperature distribution 
which is sketched in Fig. 1. In the fully developed 
region the temperature can be split into two terms, 
one being x- and the other being y-dependent, i.e. 

0 

o.02 _ ,,,,. ------------___-. 
T*(x*, y*) = T;(x*) + Tf(y*), 

\ F&R = 1000 
0.0 , 

' 
T;(y*) = T*(x*, y*) - Tg(x*) (36) 

-0.02 - 
'. 

'\ 
or, nondimensionalised with a yet undetermined ref- 

Ci erence temperature Tb. 

T*-T$ T$-T*, T*-Tg 
(37) 

I 
q:,H*/A* = q$,H*ll* + q$H*/A* . 

0.0 0.5 1.0 1.5 a 2.5 -,- 
T(-T Y) TB (-9 

FIG. 5. Eigenvalues cgi and first order parameters cli for three 
T,(Y) 

different Reynolds numbers, Pr = 0.7, qz = const. - Energy conservation between two cross sections 
Eigenvalue cG. - - - First order parameter cli. xc and x* > xt leads to TB(x) = x/PrR when 
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Tc = Tg(x$) and x = (x*-x$)/(H*R& according 
to Table 1, so that finally 

T=$+T,. 
R 

(38) 

At the reference position xg, i.e. at x = 0, the tem- 
perature profile T is T = T,. Since the whole analysis 
of our study holds at this reference position, we simply 
used T for the nondimensional temperature instead 
of T,,. 

From these considerations we can conclude that the 
viscosity effect on Re,, shown in Fig. 6, is only caused 
by the y-distribution of temperature and viscosity! 
The variation in x, which actually only means an 
increase of temperature level with increasing X, is 
accounted for in the zero order already (by changing 
ReR and Pr,). This on the other hand means that 
a term ‘constant property case’ for the zero order 
(classical OS problem) would be misleading. We sug- 
gest calling it the ‘quasi constant property case’, see 
also Herwig [12]. It means that the zero order resuIts 
are applied locally, i.e. with the local bulk temperature 
as reference temperature. As far as the zero order 
critical Reynolds number Red, is concerned this means 
that the viscosity pz in the definition of Re, according 
to (6) is PX = p*(Tg(.xX)). 

4. DISCUSSION 

4. I. It@ence of temperature fluctuations 
The common treatment of temperature fluctuations 

is just to neglect them, see for example Wazzan et 
al. [I]. This, however, cannot be justified from an 
asymptotic point of view. It is correct only in the limit 
Re, ’ = 0, see equation (IO). However, numerically 
the influence is extremely smal! in the case considered 
in this study. 

4.2. Comparison with non-asymptotic results 
Our final asymptotic results can be specified for a 

certain fluid by specifying K,, and for a certain tem- 
perature difference by specifying E. Thus they can be 
compared to the results of other studies which assume 
a certain viscosity from the beginning and calculate 
specific results for a finite number of different heat 
transfer cases. 

Since a study by Potter and Graber [2] is closely 
related to our flow and heat transfer situation, we 
recalculated their case with our asymptotic method. 
Basically it is a change in thermal boundary con- 
ditions that was necessary compared to what we have 
done so far. Instead of q$ = const., they chose a con- 
stant (though different) wall temperature on both 
sides of the wall. The perturbation parameter for this 
case is 

C, - TZ, 
&= -I-* (3% 

with T,ti, and T$ as temperatures of the upper and 

6000 
I 

2000 1 I I 
-30 

AT*IK 30 

FIG. 7. Critical Reynolds number for a Poiseuille Row with 
r;, = const. and T$ = const. Exponential viscosity 
law. ~ Non-asymptotic (Potter and Graber [2]). --- 

Asymptotic (this study). 

lower wall, respectively. The reference temperature 
now is Tt = T;t,. 

The study of Potter and Graber holds for water, 
for which they assumed the exponential viscosity law 

II* = c2dexp k,/T*l (40) 

with two constants c, and c2 and the viscosity at the 
cold wall, & From this equation we immediately get 
K,, according to equation (l6), 

K,, = -cl/T:,. 

In Fig. 7 the critical Reynolds number is shown as 
a function of the temperature difference AT* = 

T& - T$. The increasing deviations for an increas- 
ing temperature difference are higher order effects 
since in the asymptotic approach all terms of O(c2) 
are neglected. 

It should be pointed out that the asymptotic curve 
in Fig. 7 follows from the general asymptotic results 
for this flow and heat transfer situation. It holds for 
all Newtonian fluids, while the non-asymptotic results 
from the study by Potter and Graber were calculated 
for water in the specific temperature range of their 
study. 
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